Fermato teorema ir jos vaidmuo matematikos raidoje

Fermato teorema ir jos vaidmuo matematikos raidoje
Fermato teorema ir jos vaidmuo matematikos raidoje
Anonim

Fermato teorema, jos mįslė ir begalinis sprendimo ieškojimas matematikoje daugeliu atžvilgių užima unikalią vietą. Nepaisant to, kad paprastas ir elegantiškas sprendimas niekada nebuvo rastas, ši problema buvo postūmis daugeliui aibių ir pirminių skaičių teorijos atradimų. Atsakymo paieškos virto įdomiu pirmaujančių pasaulio matematikos mokyklų konkurencijos procesu, taip pat atskleidė daugybę savamokslių žmonių, turinčių originalų požiūrį į tam tikras matematines problemas.

Fermato teorema
Fermato teorema

Pats Pierre'as Fermatas buvo puikus tokio savamokslio pavyzdys. Jis paliko daug įdomių hipotezių ir įrodymų ne tik matematikos, bet ir, pavyzdžiui, fizikos srityse. Tačiau jis išgarsėjo daugiausia dėl nedidelio įrašo tuo metu populiarios senovės graikų tyrinėtojo Diofanto „Aritmetikos“paraštėse. Šiame įraše teigiama, kad po ilgų svarstymų jis rado paprastą ir „tikrai stebuklingą“savo teoremos įrodymą. Ši teorema, kuri įėjo į istoriją kaip „paskutinė Fermato teorema“, teigė, kad išraiška x^n + y^n=z^n negali būti išspręsta, jei n reikšmė yra didesnė neidu.

Pats Pierre'as de Fermat, nepaisant paraštėse palikto paaiškinimo, nepaliko po savęs jokio bendro sprendimo, o daugelis, kurie ėmėsi įrodyti šią teoremą, prieš ją pasirodė bejėgiai. Daugelis bandė remtis šio postulato įrodymu, kurį pats Fermat rado konkrečiu atveju, kai n yra lygus 4, tačiau kitiems variantams jis pasirodė netinkamas.

Ferma teoremos formuluotė
Ferma teoremos formuluotė

Leonhardui Euleriui didelių pastangų kaina pavyko įrodyti Ferma teoremą n=3, po kurios jis buvo priverstas atsisakyti paieškos, laikydamas ją neperspektyvia. Laikui bėgant, kai į mokslinę apyvartą buvo įvesti nauji begalinių aibių paieškos metodai, ši teorema gavo įrodymų skaičių diapazonui nuo 3 iki 200, tačiau vis tiek nebuvo įmanoma jos išspręsti bendrais bruožais.

Fermato teorema gavo naują postūmį XX amžiaus pradžioje, kai buvo paskelbta šimto tūkstančių markių premija tam, kas ras jos sprendimą. Sprendimo ieškojimas kurį laiką virto tikru konkursu, kuriame dalyvavo ne tik garbūs mokslininkai, bet ir paprasti piliečiai: Fermato teorema, kurios formuluotė nereiškė jokios dvigubos interpretacijos, pamažu tapo ne mažiau žinoma nei Pitagoro teorema., iš kurios, beje, ji kažkada išėjo.

Paskutinė Ferma teorema
Paskutinė Ferma teorema

Atsiradus pirmiesiems sudavimo mašinoms, o vėliau galingiems elektroniniams kompiuteriams, buvo galima rasti šios teoremos įrodymų be galo didelei n reikšmei, tačiau apskritai įrodymų vis tiek nepavyko rasti. Tačiau irniekas negalėjo paneigti ir šios teoremos. Laikui bėgant susidomėjimas rasti atsakymą į šią mįslę pradėjo nykti. Taip buvo daugiausia dėl to, kad tolesni įrodymai jau buvo teorinio lygio, o tai buvo nepajėgi paprastam gatvės žmogui.

Ypatinga įdomiausios mokslinės traukos, vadinamos „Fermato teorema“, pabaiga buvo E. Wileso tyrimas, kuris šiandien priimtas kaip galutinis šios hipotezės įrodymas. Jei dar yra abejojančių paties įrodymo teisingumu, tai visi sutinka su pačios teoremos teisingumu.

Nr.

Rekomenduojamas: